68 research outputs found

    Collaborative Research: A Dynamic Atlas of the Cricket Cercal Sensory System

    Get PDF
    A fundamental question in neuroscience is how natural sensory stimuli are encoded for information handling by the brain. Invertebrate animals often offer systems that are in some ways simpler than those of mammals, and including such features as identifiable single cells in networks of relatively few numbers. This collaborative project exploits a sensory system called the cercal system of the cricket, in which small appendages on the rear of the body contain fine hairs that are used to detect, identify and localize behaviorally relevant air current movements, such as those produced by a predator. The input from roughly 2000 receptor cells converges on 30 local interneurons and only 20 output interneurons that lead to behavior such as escape. Three collaborators at two institutions use computational and mathematical analyses of a database of anatomical and physiological measurements on the \u27dynamic map\u27 that does the central processing in the brain of the peripheral signals. The goals are to characterize the representation of dynamic sensory stimulus parameters at two processing stages within the mapped sensory system, and to examine the mechanisms that transform the representation at the interface between these two processing stages. Results will be important for our understanding of information representation in nervous systems, particularly in dynamic processing. The project also will enhance the independent career of a woman faculty member in mathematics, and students will receive multi-disciplinary, highly quantitative training related to biology, in two states that do not currently have high profiles in federally funded research

    Spike frequency adaptation affects the synchronization properties of networks of cortical oscillators

    Get PDF
    Oscillations in many regions of the cortex have common temporal characteristics with dominant frequencies centered around the 40 Hz (gamma) frequency range and the 5–10 Hz (theta) frequency range. Experimental results also reveal spatially synchronous oscillations, which are stimulus dependent (Gray&Singer, 1987;Gray, König, Engel, & Singer, 1989; Engel, König, Kreiter, Schillen, & Singer, 1992). This rhythmic activity suggests that the coherence of neural populations is a crucial feature of cortical dynamics (Gray, 1994). Using both simulations and a theoretical coupled oscillator approach, we demonstrate that the spike frequency adaptation seen in many pyramidal cells plays a subtle but important role in the dynamics of cortical networks. Without adaptation, excitatory connections among model pyramidal cells are desynchronizing. However, the slow processes associated with adaptation encourage stable synchronous behavior

    Microsaccadic Efficacy and Contribution to Foveal and Peripheral Vision

    Get PDF
    Our eyes move constantly, even when we try to fixate our gaze. Fixational eye movements prevent and restore visual loss during fixation, yet the relative impact of each type of fixational eye movement remains controversial. For over five decades, the debate has focused on microsaccades, the fastest and largest fixational eye movements. Some recent studies have concluded that microsaccades counteract visual fading during fixation. Other studies have disputed this idea, contending that microsaccades play no significant role in vision. The disagreement stems from the lack of methods to determine the precise effects of microsaccades on vision versus those of other eye movements, as well as a lack of evidence that microsaccades are relevant to foveal vision. Here we developed a novel generalized method to determine the precise quantified contribution and efficacy of human microsaccades to restoring visibility compared with other eye movements. Our results indicate that microsaccades are the greatest eye movement contributor to the restoration of both foveal and peripheral vision during fixation. Our method to calculate the efficacy and contribution of microsaccades to perception can determine the strength of connection between any two physiological and/or perceptual events, providing a novel and powerful estimate of causal influence; thus, we anticipate wide-ranging applications in neuroscience and beyond

    NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail

    Get PDF
    Biologically detailed single neuron and network models are important for understanding how ion channels, synapses and anatomical connectivity underlie the complex electrical behavior of the brain. While neuronal simulators such as NEURON, GENESIS, MOOSE, NEST, and PSICS facilitate the development of these data-driven neuronal models, the specialized languages they employ are generally not interoperable, limiting model accessibility and preventing reuse of model components and cross-simulator validation. To overcome these problems we have used an Open Source software approach to develop NeuroML, a neuronal model description language based on XML (Extensible Markup Language). This enables these detailed models and their components to be defined in a standalone form, allowing them to be used across multiple simulators and archived in a standardized format. Here we describe the structure of NeuroML and demonstrate its scope by converting into NeuroML models of a number of different voltage- and ligand-gated conductances, models of electrical coupling, synaptic transmission and short-term plasticity, together with morphologically detailed models of individual neurons. We have also used these NeuroML-based components to develop an highly detailed cortical network model. NeuroML-based model descriptions were validated by demonstrating similar model behavior across five independently developed simulators. Although our results confirm that simulations run on different simulators converge, they reveal limits to model interoperability, by showing that for some models convergence only occurs at high levels of spatial and temporal discretisation, when the computational overhead is high. Our development of NeuroML as a common description language for biophysically detailed neuronal and network models enables interoperability across multiple simulation environments, thereby improving model transparency, accessibility and reuse in computational neuroscience

    Invariant computations in local cortical networks with balanced excitation and inhibition

    Get PDF
    [Abstract] Cortical computations critically involve local neuronal circuits. The computations are often invariant across a cortical area yet are carried out by networks that can vary widely within an area according to its functional architecture. Here we demonstrate a mechanism by which orientation selectivity is computed invariantly in cat primary visual cortex across an orientation preference map that provides a wide diversity of local circuits. Visually evoked excitatory and inhibitory synaptic conductances are balanced exquisitely in cortical neurons and thus keep the spike response sharply tuned at all map locations. This functional balance derives from spatially isotropic local connectivity of both excitatory and inhibitory cells. Modeling results demonstrate that such covariation is a signature of recurrent rather than purely feed-forward processing and that the observed isotropic local circuit is sufficient to generate invariant spike tuning

    Neural network model of the primary visual cortex: From functional architecture to lateral connectivity and back

    Get PDF
    The role of intrinsic cortical dynamics is a debatable issue. A recent optical imaging study (Kenet et al., 2003) found that activity patterns similar to orientation maps (OMs), emerge in the primary visual cortex (V1) even in the absence of sensory input, suggesting an intrinsic mechanism of OM activation. To better understand these results and shed light on the intrinsic V1 processing, we suggest a neural network model in which OMs are encoded by the intrinsic lateral connections. The proposed connectivity pattern depends on the preferred orientation and, unlike previous models, on the degree of orientation selectivity of the interconnected neurons. We prove that the network has a ring attractor composed of an approximated version of the OMs. Consequently, OMs emerge spontaneously when the network is presented with an unstructured noisy input. Simulations show that the model can be applied to experimental data and generate realistic OMs. We study a variation of the model with spatially restricted connections, and show that it gives rise to states composed of several OMs. We hypothesize that these states can represent local properties of the visual scene

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore